Jonathan Victor



The research interests of the laboratory focus on areas of basic and clinical neuroscience in which combining mathematical, computational, and experimental approaches can lead to significant progress.

Basic research

Overall, we are interested in the design principles of sensory processing, both in the sensory periphery and in the brain, and how these design principles are implemented in biological hardware. We seek to determine the aspects of sensory information that are represented, the features of the activity of individual neurons and neural populations that support these representations, and realistic models for how these representations are transformed. These questions are addressed in the visual system, via neurophysiologic studies at the single-cell and multineuronal level (with Keith Purpura) and via psychophysical studies (with Mary Conte).

Experimental investigations are complemented by theoretical studies, including (a) the development of approaches to analyze multineuronal activity and (b) strategies for stimulus design that bridge the gap between methods motivated by analytical convenience, such as white noise and sinusoids, and methods based on ethologically relevant stimuli, such as natural scenes.

Clinical research

In many neurologic diseases, including epilepsy and chronic brain injury, alterations in the dynamics of neuronal populations plays a major role in pathogenesis and/or symptomatology. In conjunction with Niko Schiff and colleagues, we are analyzing EEG, functional imaging, and anatomical imaging in brain injury patients to probe these dynamics and their relationship to spontaneous and induced fluctuations in cognitive ability and behavior. Population models of thalamocortical interactions play an important role in shaping the analytical approach. An integral part of the research is the development of dimension-reduction and statistical methods for analysis of multichannel datasets such as the EEG, which contain rich dynamical information, but also nonstationarity, noise, and artifacts with complex statistical structure.

We anticipate that both the investigational methods developed and the insights gained will generalize to many other conditions in which rapid fluctuations in level of function are a prominent feature, such as autism and Alzheimer’s Disease.

Collaborative work

  • Olfactory navigation (with John Crimaldi, Bard Ermentrout, Lucia Jacobs, Kathy Nagel, Justus Verhagen, and Nathan Urban), an NSF IdeasLab and BRAIN initiative; the project abstract is here
  • Eye movements as an integral part of visual processing (with Michele Rucci)
  • Sensory processing and neural coding in the gustatory system (with Patricia Di Lorenzo)
  • An open resource to facilitate application of information-theoretic analyses to neural data (with Dan Gardner at the Laboratory of Neuroinformatics)
  • An integrated software suite for exploratory and spectral data analysis (with Partha Mitra)

Research Topics

Need more info?
Ask a question
Follow us on

Weill Cornell Medicine Graduate School of Medical Sciences 1300 York Ave. Box 65 New York, NY 10065 Phone: (212) 746-6565 Fax: (212) 746-5981