Syllabus: Fall 2021 Applied Quantitative Techniques for the Biological Sciences

Lecture: Day/time Weill C200 Workshop: Day/time

Course directors:

Course teaching assistants:

TBD

Dr. Chun-Jun Guo (<u>chg4001@med.cornell.edu</u>) Dr. Diane Lane (<u>dal2021@med.cornell.edu</u>)

Dr. Jason Lewis (<u>lewisj2@mskcc.org</u>)

Dr. Nikolaus Schultz (<u>SchultzN@mskcc.org</u>)

Credits: 2

Dates: August 23, 2021 to October 22, 2021. Tuesday and Thursday, 5:30pm - 7:00pm.

Student Body: Year 2 students from the BCMB, IMP, NEURO and PHARM PhD Programs.

Course objective and goals:

This course is a primer on applied quantitative biology with a focus on proper methodology for study design and statistical analysis in biological research. The course requires basic knowledge of statistics and research methods.

Course structure:

The course will meet twice a week for 1.5 hours each class time. All students will attend the lecture portion of the class in Weill C200. The problem-based workshops will be split by department and meet in the lettered classrooms in the hallway beside C200.

Program	<u>Room #</u>
BCMB	200 A
IMP	200 B
NEURO	200 C
PHARM	200 D

Homework will be assigned on the lecture day and will be due on the following class meeting. The workshops will allow students to apply the information provided in the lecture using sample data analyzed utilizing GraphPad Prism or "R" (lecture #4).

Required materials:

All students should bring their own computers to the lectures/workshops and have the following programs downloaded onto their computers by the first class:

- 1. GraphPad Prism
- 2. R
- 3. Image J

The statical software is available free of charge and can be obtain from Cornell's software service library: <u>https://library.weill.cornell.edu/node/1051</u>

Image J software can be download at: https://imagej.nih.gov/ij/download.html

The following books are **<u>not required</u>** but are useful statistical references for the material that will be covered in class:

- 1. *Design and Analysis: A Researcher's Handbook.* Keppel G. and Wickens T.D. (2004), fourth edition, Person College Div. ISBN-13: 978-0135159415.
- 2. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Cohen J., Cohen P., West S.G., Aiken L.S. (2002), third edition, Routledge. ISBN-13: 978-0805822236.

Grading and Assessment:

The grading will be on a Pass/Fail basis. The grading will be based on homework assignments and participation in the workshops. There will be no final exam.

Course Policies:

While group study is permitted (and encouraged), all assigned work must be your own. On-line resources may be used to assist in completing assignments. Submitting work that is not original (*i.e.*, not your own) is cheating, and will result in a failure for that assignment and possible referral to the Academic Integrity Hearing Board of the Graduate School. In the event that you consider this determination unreasonable, you are entitled to have the case brought before the Academic Integrity Hearing Board of the Graduate School. We ask that you review the Weill Cornell Graduate School of Medical Sciences Code of Legislation (Link 1) and Cornell University's Code of Academic Integrity (Link 2) policies as these are the standards that will apply throughout your education in the Graduate Program.

- 1. <u>https://gradschool.weill.cornell.edu/sites/default/files/code_of_legislation_weill_cornell_graduate_school_of_medical_sciences_june_16_2020_1.pdf</u>
- 2. http://theuniversityfaculty.cornell.edu/academic-integrity/code-of-academic-integrity/

Week 1 - Basic elements of statistics (Diane Lane, PhD)				
Lecture:	Date/time	Central tendencies/descriptive statistics		
	C200	- Variance		
		 Assumptions for statistics 		
		 Best practices for handling data/visualizing data 		
		Data transformation/scaling/difference from controls		
Workshop:	C200 A-D	Calculate variance with different datasets to understand how unequal,		
		large, or skewed data effects the final outcome of a statistical analysis.		
Week 2 - Selecting appropriate statistical tests for your dataset (Diane Lane, PhD)				
Lecture:	Date/Time	- Descriptive statistics		
	C200	- Univariate tests		
		- Multivariate tests		
		- Large datasets		
		- Parametric vs. non-parametric tests		
Workshop:	Date/time	Provide various "real world" datasets and determine the proper		
	C200 A-D	statistical tests for each with discussion on different approaches and		
		alternatives.		
		Demonstrate how to calculate in Prism.		
Week 3 - Study design and analysis (Audrey Mauguen, PhD)				
Lecture:	Date/Time	Source of variability and experimental design		
	C200	- Biological vs. technical replicates		
		 Plan a study to test an hypothesis 		
		Statistical test and p-value		
		Power and sample size		
		- Special cases		
		Non-normative data		
		Survival data		
Workshop:	Date/Time			
	C200 A-D			
Week 4 – Introduction to "R"				
Lecture:	Date/Time			

Course Schedule:

	C200			
Workshop:	Date/Time			
	C200 A-D			
Week 5 – Au	tomated figure	analysis using Image J (Csaba Konrad, PhD)		
Lecture:	Date/Time	Basics of Image J scripting		
	C200	Writing macros for automated functions		
		Methods for cell identification/isolation		
		- Measuring ROIs		
		- Cell counting		
		- Separating and measuring fluorescent channels		
		- Segmentation of cell profiles		
Workshop	Dato/Timo	Application of Image I techniques		
workshop.	C200 A-D	Application of image 5 techniques		
Week 6 - Int	roduction to bio	pmedical image quantification (Luke Carter, PhD)		
Lecture:	Date/Time	Data types and format – what data is in an image?		
	C200	Common imaging modalities and data origin		
		- Image data formats		
		- Raw data, DICOM, etc.		
		- Rendering & visualization/how can we look at image data?		
		- Color mapping, glyphs		
		3D data: slice view vs. projections vs. volume rendering		
		Registration – how to spatially align image data?		
		Segmentation – how to define structures/regions in an image?		
		Manual methods		
		Semi-automated and automated methods		
		Image processing		
		- how to manipulate images or extract information?		
		Image math		
		Summary statistics (ROI mean, max, etc.)		
		- Filtering		
		- Masking		
		- Histogram		
		- Radiomics		
		Image presentation		
		- making your data tell a story elegantly and ethically		
		Mouse MRI		
		- delineate tumor margin and calculate tumor volume		
		- calculate maximal tumor untake, metabolic tumor volume		
Workshop:	Date/Time	Application of biomedical imaging techniques		
workshop.	C200 A-D	Application of biomedical imaging teeningues		
Week 7 - Approaches and analysis of brain connectivity studies (Amy Kuceveski, PhD)				
Lecture:	Date/Time	Basics of elements of MRI analysis		
	C200	- what does it measure		
		- how are the measurements are extracted		
		- functional and diffusion MRI specifically		
		Quantification approaches to brain connectivity		
		- connectome approaches		
		Mapping brain connectivity and dysconnectivity to behavior and		
		impairments		
		- Some examples of the latter		
Workshop:	Date/ Lime	Application of MRI analysis		

	C200 A-D			
Week 8 - General principles of cancer genomics data analysis and the cBioPortal for Cancer Genomics				
Lecture:	Date/Time C200	Identifying recurrent genomic alterations - Recurrently mutated genes - Recurrently mutated amino acids - Recurrent copy-number alterations - Epigenetic silencing events Pathway analysis Visualization and analysis of genomic data using the cBioPortal for Cancer Genomics and OncoKB		
Workshop:	Date/Time C200 A-D	Application of genomics data analysis		
Week 9 – Gene expression analysis				
Lecture:	Date/Time C200	Bulk gene expression analysis - Gene Set Enrichment analysis - Identifying differentially expressed genes - Unsupervised clustering of expression data Single cell expression analysis		
Workshop:	Date/Time C200 A-D	Application of gene expression analysis		